
VA Summer Epidemiology Session 
Developing Scientific Research Proposals (Grant Writing) 

 
 

Session 7 (Readings) 
 
Methods: Analysis and Power 
 
A. Guidelines 
B. Case Control Study 
C. Cohort Study 
D. Intervention Trial 
E. Ancillary Study to Intervention Trial 
F. Power  
F.1. Overview 
F.2. By Study Type 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
 
A.   Guidelines  
The Analysis section describes exactly how you will test the null hypotheses given in your 
Specific Aims.  The Power section describes relationships among four parameters:  (1) effect 
size; (2) sample size; (3) probability of a statistically significant test when H0 should be rejected 
(1-β or power); and (4) probability of a statistically significant test when H0 should not be 
rejected (Type I  or α error).  Because type I error is usually set to a constant (most often 0.05), 
results of power analyses are usually expressed as a function of any two of the three remaining 
parameters.  At study section, every epidemiologist and biostatistician will go directly to your 
Analysis and Power sections.  Your analyses must be clear, the statistical test must be 
appropriate, and the power analyses must show that your design will likely lead to a meaningful 
result.  
 
Here are some guidelines for the analysis section.   
 
• Link each analysis directly and explicitly to a specific aims.  
• Specify each independent and dependent variable and covariate.   
• Specify the statistical model, procedure or test 
• Describe how each variable is coded for analysis (continuous, transformed, categorized, etc.) 
• Justify each decision 
• Specify precisely which parameter(s) is (are) used to test the specific aim 
 
 



Examine the Analysis sections below. 
 
 
B.   For a Case Control Study 
 
Analyses of Specific Aims  
Primary Aim:  Association of Dietary Fat Intake with Prostate Cancer.  As an example of our 
analytic approach, we present the analyses for the first part of the primary specific aim:  the 
investigation of the association of total dietary fat intake with prostate cancer.  
Choice of a Statistical Model.  We will analyze the association between dietary fat intake and 
biopsy proven presence or absence of prostate cancer using the logistic regression model: 
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The logistic model allows estimation of the effect of the factor of interest (x1), in this case fat 
intake, on probability of disease (pr(d)), while controlling the effects of other factors (x x2 3, ... ).  
We plan to control for age, race, family history, and other confounding factors identified during 
analysis.  Parameters in the model will be estimated using maximum likelihood techniques.102  
Although this is a cohort study, survival analysis is inappropriate.  Our endpoints are not time-to-
event; rather they are simple presence or absence of prostate cancer at seven years.  We assume 
that any persons diagnosed with prostate cancer before seven years would also be positive for 
prostate cancer at seven years.   
 
Expression of Fat Intake in the Model and Adjustment for Energy.  There are several approaches 
to expressing fat intake and adjusting for energy intake in epidemiologic models.90  Adjustment 
of fat intake for total energy intake is important, especially when the dietary assessment tool is a 
food frequency questionnaire, because some people tend to overestimate and others 
underestimate their total energy intake.  In addition, there are individual differences in total 
energy intake due to differences in body size, physical activity or metabolic factors, and it may 
be desirable to adjust for these factors.  However,  because fat intake and energy intake are 
highly correlated (r = .88)90, statistical control of fat intake for total energy is complex.  There is 
considerable interest and research on the best ways to model dietary intake data in epidemiologic 
analyses, and we expect considerable progress before the data from this study will be analyzed.  
We present here the two approaches that now appear best to us.    
First, we will express fat intake as total energy from fat and we will adjust for total energy from 
other macronutrients (carbohydrate, protein and alcohol).  Second, we will express fat intake as 
percent of energy from fat: 

% energy from fat =  fat intake (g) x 9 kcals / g
total energy intake (kcal) .

 

Percent energy from fat is an attractive way of expressing fat intake both from a biologic 
perspective (it expresses the nutrient density of food intake) and from a public health approach 
(most public health recommendations concerning fat intake are given in terms of percent energy 
from fat).  This expression for fat intake has a statistical advantage as well, because it is only 
weakly correlated with energy intake (r = .05).90  We will also include energy intake as an 
adjustment factor in this model, which will adjust for any remaining confounding.    
We will model the association between fat intake and prostate cancer by categorizing the fat 
measure into quartiles (using indicator variables in the model), and we will calculate the odds 
ratios of prostate cancer and their 95% confidence intervals for each quartile of fat intake.  This 



model is commonly used in epidemiology, because it allows interpretation of the shape and 
magnitude of the association of the factor of interest with disease risk.  We will also conduct a 
test for trend by representing percent energy from fat as a single variable coded 1 for quartile 1, 
coded 2 for quartile 2, etc.,  in the logistic model.  This yields an overall estimate of the trend 
odds ratio for a one quartile increment in fat intake and yields a single significance test for the 
association of fat intake with prostate cancer.  This is the logistic analog to the Mantel-Haenszel 
test for trend.  
For most men, we will use the average of values for the one- and four-year FFQs to improve the 
accuracy of the measurement of fat intake.85  For men who only complete one, only one will be 
used.  For men who have a biopsy (positive or negative) before the second FFQ, only the first 
will be used.  Because averaging two measures reduces the random component of measurement 
error85, inclusion of some subjects with only one measure should not introduce any systematic 
difference in measurement error between cases and controls.  We will examine results using only 
the first FFQ, to assure us that there is no bias.    
The other variables to be analyzed as part of the primary specific aim are saturated fat intake and 
servings of high fat meats and servings of high fat dairy foods.  The relation of saturated fat to 
prostate cancer will be analyzed as described for total fat intake.  The other variables will 
modeled similarly, by categorizing servings per day into quartiles and adjusting for total energy.     
Secondary Aims A and B:  Associations of Fiber and Micronutrients with Prostate Cancer.  The 
variables to be analyzed as part of the secondary aim are dietary fiber, β-carotene, vitamin A, 
servings of fruits and servings of vegetables.  We will also analyze intake of other micronutrients 
(Table 3).  In these analyses, we will categorize fiber, micronutrients and servings of food groups 
into quartiles, and we will adjust for total energy.  Adjustment of total energy is 
methodologically more straightforward in these models, because correlations between these 
dietary measures and total energy are modest (e.g., the correlation between fiber and total energy 
is approximately 0.35).  However, the best approach to analyses of micronutrients that includes 
intake from nutritional supplements is unclear.  Variability in micronutrient intake due to use of 
supplements often overwhelms any variability in micronutrient intake from foods, and 
micronutrients from multivitamin supplements are so strongly correlated that it may not be 
possible to separate effects of specific micronutrients.  We will therefore also analyze 
micronutrients: (1) from foods alone; (2) from supplements alone; and (3) from foods and 
supplements together.  We will also examine the effects of using multivitamins, coded as a 
bivariate indicator variable, both as an independent variable and as a covariate.    
Secondary Aim D:  Modification of the Effect of Finasteride by Dietary Fat.  The final analyses 
for this study will be conducted to answer whether the effect of finasteride is modified by dietary 
fat intake.  First, we will compute the odds ratios and 95% confidence intervals for the effect of 
finasteride on prostate cancer separately for the four groups of men categorized by quartiles of 
percent energy from fat.  If these appear to differ (e.g., if finasteride is beneficial for men with 
the highest level of fat intake but not for those in the lowest level of intake), this is suggestive of 
modification of the finasteride effect by dietary fat intake.    
Second, we will model the interaction between finasteride and dietary fat.  To examine this 
interaction, we will model the relationship between dietary fat, treatment and prostate cancer in a 
logistic model using the entire study cohort.  The model will include the main effect of treatment 
(finasteride vs. control) and the main effects of dietary fat and an interaction between the two, as 
well as covariates (age, race, energy intake).  If consistent with the data, dietary fat will be 
modeled as a single trend variable (described under Primary Aim above).  This simplifies the 
interaction, so that a single term would indicate whether the slope of any dietary fat effect on 
prostate cancer is different for the treatment vs. the control group.  We will use the interaction 
term coefficient (β) and its standard error to determine the magnitude and significance of the 
modification of the finasteride effect by dietary fat. 



C.   For a Cohort Study 
 
DATA ANALYSIS AND STUDY POWER 
 Outcomes. The primary outcome is total cancer incidence. Although both in situ and 
invasive cancers will be ascertained, the primary analysis will be limited to invasive cancer.  
 
 Definition of exposure variables. The four primary exposure variables are average 
intake per day of supplemental vitamin C, vitamin E, calcium, and multivitamins over the 10 
year reference period ending at baseline (Aim 2). Cumulative intake of supplemental vitamin E, 
C, and calcium will be computed by summing intake from individual supplements of that 
nutrient (based on years of use, days per week used in those years, and reported dose per day) 
and intake of that nutrient from multivitamins in the 10 year period (based on years of use of 
each type of multivitamin, days used per week in those years, and actual formulation of the 
named brand or if not available, the most common formulation of that type of multivitamin—see 
Section D.3). This yields the 10 year cumulative dose, which is converted to average dose per 
day over the entire 10 year period for ease of interpretation.  
 
 For multivitamin pills, cumulative dose will simply be expressed as years of daily use 
(years x days per week used in those years/7). The primary analysis will be restricted to 
multivitamin pills with minerals. This is the most common formulation, and interpretation of the 
results will be straightforward if only one type is included. We will, however, also use other 
categories of multivitamins, e.g., any type of multivitamin pill with retinol. 
 
 These supplement variables will be divided into four categories: no use over the 10 year 
period and tertiles of use among users. The 33rd and 67th percentile of average daily dose of 
supplements over the 10 year period among users from out pilot study is given in Table 5; these 
are estimates of the cutpoints for the categories of users. Each of the cutpoints for the highest 
third, except calcium use among men, is significantly above what could be achieved by daily use 
of a multivitamin pill. As noted in Section B Limitations of Past Studies, collinearity of nutrients 
from supplements induced by taking multivitamin supplements has been a problem in past 
studies. However, we will have sufficient numbers of subjects taking individual supplements of 
the micronutrients of interest (see Table 5), so that only users of individual supplements would 
fall into the highest third of intake. We prefer the categorization of variables because it provides 
risk estimates for each of several levels of use, rather than attempting to model the dose-response 
relationship with one parameter. However, other parameterizations of these variables will also be 
considered. 
 
 In addition to these primary exposure variables, we will also consider separately the 
average dose per day in the years the supplement was taken and the duration of use, to 
understand how these two components (duration and intensity) of cumulative dose affect the 
outcomes.  
 

Our secondary exposures (Aim 3) are intakes of total (diet plus supplementary) vitamin 
C, E, and calcium. These will be estimated by summing average daily intake of these nutrients 
from the FFQ and from the supplement questionnaire, based on supplements currently taken at 
baseline. Attention will be paid to the forms of the nutrient in supplements and in food. In 



particular, vitamin A in multivitamin pills now includes both vitamin A acetate and β-carotene, 
and vitamin E in supplements is dl-α tocopheryl acetate, while food tables reflect the α 
tocopherol content of food. We will use weights to standardize the potencies in terms of retinol 
equivalents for vitamin A or α tocopherol equivalents for vitamin E (129) when different forms 
are added together. 

 
 Confounding and effect modification. Supplement users may be more health conscious 
and therefore more likely to practice other disease prevention behaviors, which may reduce their 
risk of disease (14). Our pilot study and others (13, 15, 130) have shown some differences in 
smoking, exercise, diet and screening between supplement users and non-users. We will use two 
methods to control for factors that may distinguish supplement users from non-users. First, 
dietary intake, intake of other supplements, and the other health behaviors listed in Table 8 will 
be tested as potential confounders. Of particular importance are the need to test as possible 
confounders nutrient intake variables, e.g., control for vitamin C intake from diet when 
considering vitamin C from supplements and control for other supplement use, e.g., use of 
vitamin E. The second method is to look for a dose-response gradient of supplement use on the 
study outcome only among users of that supplement (e.g., a trend across the three levels of use of 
vitamin C). Thus, only users of supplemental vitamin C are compared among themselves, 
reducing bias caused by comparing non-users to users (confounding factors would of course still 
be evaluated). Although this approach would have less power, it would add evidence for or 
against specific effects. 
 
 Conversely, there is also concern that certain health conditions may lead people to take 
supplements and these health conditions would increase the outcome events in supplement users. 
As noted under Section D.3 above, this concern is greater for mortality than for cancer incidence. 
To reduce the problem that those with serious medical conditions might have begun using 
supplements, we will exclude the first two years of deaths from analyses of the relation between 
supplements and mortality. (Therefore mortality is not an endpoint in this 5-year proposal.) For 
cancer, we will use two methods to control for this type of confounding. First, we will stratify 
our analyses by the major risk factors and preclinical conditions that could have prompted 
individuals to begin supplement use (e.g., family history, benign breast biopsies), to evaluate any 
differential effect of these conditions on the relation between supplement use and cancer. If 
effect modification is not observed, we will combine the groups but control for these and other 
factors. Secondly, we can control for the major reasons for taking supplements (for a current or 
prior health condition, to prevent future diseases, for more energy, etc.). 
 
 In addition, we will stratify our analyses by sex, by smoking (current, former, never 
and/or pack-years) and by other potential modifiers, and test for effect modification. 
 
 Statistical model. For a given supplemental intake variable, we will create indicator 
variables x x x1 2 3, , for intake in the three tertiles of use of that supplement. Relative risks and 
their confidence intervals adjusted for covariates for these three tertiles of use will be estimated 
from Cox proportional hazard models (131): 
 ln ( ) ln ( )λ λ α α αt t x x x= + + + +0 1 1 2 2 3 3 other covariates, [1]  
 



where λ0 ( )t  is the cancer incidence rate among non-users. The test for trend across the four 
levels of supplement intake will be performed by creating the variable y taking values of 0, 1, 2, 
and 3 for non-users, and first, second, and third tertile of use, respectively, and testing the 
parameter β in the model:  
 ln ( ) ln ( ) other covariatesλ λ βt t y= + +0 .  [2] 
 
 For analyses involving data from more than one individual in a household, we will assess 
the level of intra-household correlation in cancer incidence using methods for bivariate survival 
analysis (132). We anticipate that, after adjustment for known risk factors and behaviors, 
intrahousehold correlations will be small and have little effect on parameter estimates and 
confidence intervals. 
 
 Other covariates will be classified as confounders and included in the analyses if they 
modify the point estimate of β in [2] by 10% or more, determined by comparing the estimates 
with and without the potential confounder. Effect modification of β by a categorical predictor z 
will be performed by the likelihood ratio test between a model with y and z (and other 
covariates) and a model with y, z, and interaction terms between y and z (and other covariates). 
 
 
 
D.   For an Intervention Trial 
 
Analysis and Statistical Power 
 
Our principal analyses will be based on treatment group contrasts in: (Specific Aim 1) changes in 
%G1 and %S phase between baseline and 36 months; and (Specific Aim 2) percent of 
participants developing islands of normal epithelium within Barrett's columnar epithelium at 36 
months.  Secondary analyses will address: (Secondary Aim 1) an additional measure of 
neoplastic progression, aneuploidy and/or accumulation of cells at the G2 cell cycle checkpoint; 
and (Secondary Aim 2) relationships between the dietary intervention and gastroesophageal 
reflux, assessed as symptoms and endoscopic evidence of ulcers, erosions and related lesions. 
 
Principal Outcomes 
 
We will use two markers of neoplastic progression, %G1 and %S phase, as the principal 
outcome measures for Specific Aim 1.  We will use the mean of nine biopsies from each 
assessment point to characterize values for each participant.  We will use a linear regression 
model:  %G1 (month 36) = b0 + b1*I + b2*X, where b0 is the intercept, I is the treatment 
indicator, and X is the vector of covariates (age, body mass index, and time since Barrett's 
diagnosis).  The statistical test that b1 is significantly larger than zero will address Specific Aim 
1.  The %S endpoint will be analyzed similarly.   
 
We will use a binary response indicator of whether the participant developed islands of normal 
squamous epithelium at 36 months as the outcome measure for Specific Aim 2.  We will use a 
logistic regression model: logit (p) = b0 + b1*I + b2*X, where p is the probability of a patient 
developing squamous islands, b0 is the intercept, I is the treatment indicator, and X is the vector 



of covariates (age, body mass index, and time since Barrett's diagnosis).   The statistical test that 
b1 is significantly larger than zero will address Specific Aim 2.   
 
 
 
E.   Ancillary Study to Intervention Trial 
 
From the SELECT Trial, and 2X2 factorial design testing selenium and/or vitamin E for 
prevention of prostate cancer.  This ancillary study is to test effects of the study agents on 
respiratory function, using forced expiratory volume in the first second (FEV1) as the outcome 
measure.   
 
Respiratory Ancillary Study: Analysis plan 
All analyses are based on the difference between treatment groups in the change in FEV1 
between baseline and follow-up, a measure often termed the “intervention effect” and defined as 
follows: 

PfbIfb FEVFEVFEVFEV ))()(())()(( 1111 −−−  
 
where the subscripts b and f refer to baseline and follow-up, and the subscripts I and P refer to 
intervention and placebo groups.  We will follow the analytic strategy used in the SELECT 
parent study. Thus, our analysis plan is not based on a 2X2 factorial design because experimental 
evidence suggests an interaction of selenium and vitamin E.  For the Primary Specifics Aims, the 
analysis plan consists of three pre-specified comparisons in the intervention effect at 3-years 
post-randomization, based on the contrasts of (1) selenium vs. placebo;  (2) selenium plus 
vitamin E vs. placebo and (3) Vitamin E vs. placebo.  The statistical test will be based on a 
multiple regression analysis, in which the dependent variable will be difference in FEV1 between 
baseline and the 3-year follow-up, and the independent variables will be FEV1 at baseline and an 
indicator variable for treatment arm.  In this model, the regression coefficient for the indicator 
variable is the intervention effect, and the standard error of the regression coefficient is used to 
test whether this difference is statistically significant.  Using this same model, we can also 
control for baseline characteristics that may affect FEV1, including age, height, smoking, and 
dietary and serum antioxidants. Recognizing that each of our three pair-wise comparisons is 
correlated due to the common placebo reference group, the multiple comparison procedure 
proposed by Dunnett will be employed (95).  With 4 treatment groups (including placebo), and a 
two-sided alpha=0.05, the standard Z critical value for significance is 2.35.  This translates into a 
two-sided p-value needing to be ≤ 0.018 in order to be statistically significant, giving us a 
conservative test.  
 
For the secondary specific aims, the analysis plan consists of two pre-planned comparisons in the 
intervention effect, based on contrasts of  (1) selenium plus vitamin E vs. vitamin E alone; and 
(2) selenium plus vitamin E vs. selenium alone. As is suggested by Proschan (96), these latter 
two comparisons will be carried out only if one or more of the three primary comparisons are 
statistically significant. These latter two comparisons will be made using a two-sided 
alpha=0.025.   
 
The last secondary aim, aim 2.3, investigates whether the effect of intervention is modified by 
either smoking status or by level of urinary excretion of F2-isoprostanes. To examine effect 
modification by cigarette smoking, the analyses will be extended to include an indicator variable 
for smoking, and an interaction term (indicator variable for smoking x indicator variable for 
treatment). In this model, the regression coefficient for the interaction term denotes the 
difference in the intervention effect between smokers and non-smokers, and the standard error of 



this regression coefficient is used to test whether this difference is statistically significant. We 
will also explore other approaches to analyzing effect modification by smoking.  We will 
consider smoking dose, parameterizing this variable either as cigarettes per day or as an ordered 
categorical variable for 0, 1-9, 10-19, and 20+ cigarettes per day.  Further, we will examine 
effects of lifetime smoking in addition to current smoking using smoking history questionnaire 
responses to compute cumulative smoking dose.  Questionnaire updates on smoking status allow 
the identification of those who quit smoking over the follow-up period, and this will be 
considered in the analysis. We will use a similar approach to analyze effect modification by 
urinary F2-isoprostanes.  The simplest analysis will dichotomize urinary F2-isoprostanes, and the 
regression coefficient for the interaction of dichotomized urinary F2-isoprostanes with treatment 
is the difference in treatment effect between participants with low and high urinary F2-
isoprostanes levels. We will also examine the distribution of the continuous data for urinary F2-
isoprostanes, and after transformation for normalization, analyze its effects and interaction with 
treatment when coded as a continuous variable.   
The length of the study is five years, to allow for a three year follow-up on all participants, given 
that in the first six months the study protocols will be implemented at field sites, enrollment will 
take place from six months to 1.5 years, and the last person enrolled at 1.5 years will be followed 
for three years for a final measurement at 4.5 years on the study timeline. Thus, the analysis is 
planned for the final 6 months of the project, to allow for a full three years of follow-up on all 
men. 
In a subgroup of 750 participants, pulmonary function testing will be done yearly to identify the 
pattern of response to treatment. The data to identify pattern of response is important because 
although various scenarios may yield the same approximate intervention effect at year 3, they 
have very different implications for further benefits of continued monitoring of the study 
population. For example, if supplementation brings about an initial improvement in FEV1 
without any evidence of a decreased slope in FEV1 over time there may be little or no benefit to 
continued monitoring of participants. On the other hand, if supplementation changes the slope of 
decline in FEV1, it would be interesting to continue follow-up to directly assess whether the 
changes in slope are maintained or strengthened with further supplementation. Regardless of the 
pattern of response, it would be very interesting to add a pulmonary function assessment of the 
Respiratory Ancillary Study participants at the last SELECT visit: further funds will be sought 
for this follow-up. We have planned annual FEV1 assessments on a subgroup of 750 men to 
allow investigation of the pattern of response to supplementation (i.e., an average of about 190 
men in each of four groups). We will use regression spline models [(97); p 392], for example a 
first power or linear spline model, and non-parametric smoothing methods [(97); p425] to 
describe the pattern of the change in FEV1 across the three years (FEV1 measured at baseline, 
year 1, year 2 and year 3) in each of the treatment groups. This approach assumes no underlying 
form, and lets the data determine the shape of the relation. Previous epidemiologic research has 
demonstrated the usefulness of such methods for estimating the dose-response relation between 
an exposure and an outcome (98).  
 
Additional analysis plans: Additional study data are available to pursue secondary questions. For 
example, one purpose of the dietary assessment measures in the respiratory ancillary study is to 
investigate whether the associations of experimental supplements, vitamin E and selenium, with 
pulmonary outcomes differs according to pre-randomization intake of supplemental vitamin E or 
supplemental selenium. These data also will allow investigation of the dietary intake of Vitamin 
C at randomization in relation to FEV1 change over follow-up. The data on serum concentration 
of serum vitamin E and serum selenium will allow investigation of whether the effects of study 
supplements on pulmonary function are conditional upon the starting levels of these antioxidants. 
The results of these analyses can be used to better understand the study’s primary outcomes, and 
will be important in formulating public health recommendations for respiratory disease 
prevention. 
 



F.   Power Section 
 
F.1.  Overview of the Basics 
 
The power section will give results of analyses that answer one of three questions. 
 
1. The sample size needed to obtain a statistically significant results with a specified probability 

(power), type 1 error, and effect size. 
2. The probability that your analyses will yield statistically significant results (power) given a 

specified effect size, type 1 error, and sample size 
3. The minimum effect size that can be detected as statistically significant with a specified 

probability (power), type 1 error,  and sample size 
 
 
It is critical to understand that “effect size” is the true, underlying effect size, which is the point 
estimate around which your observed effect size will vary.  One common misperception is that 
the effect size is the smallest effect size that would be declared statistically significant, given the 
measure’s variance and sample size.  The problem with this reasoning is that this calculation 
does not incorporate the likelihood that, by chance alone, you can observe effect sizes 
considerable smaller the true effect size.  Power is thus the probability that you will have a 
statistically significant test statistic for your observed effect, given the variance around the true, 
underlying effect size and the specified sample size. 
 
Number 1 above is the most common form for power analyses, to solve for a required sample 
size given a specified effect size and probability of calling the effect statistically significant.  For 
cohort or case-control studies, one usually selects 80% power at a 5% alpha error to determine 
the required number of participants.  For clinical trials, one usually specifies 90% power and 5% 
alpha error to detect the specified effect size.  This is because clinical trials are very expensive, 
and the cost of additional participants is considered offset by the possibility that a true effect may 
be missed by chance alone. 
 
Number 2 above is used when there are a fixed number of available observations, for example 
when you are analyzing an existing data set, and when there is some well-justified minimum 
level of effect that has biological or public health meaning.   For example, suppose you had data 
from a case control study with 200 cases and 400 controls, and you were interested in analyzing 
stored bloods to determine if a genetic polymorphism was associated with disease risk, and that 
the minimum level of increased risk that is meaningful is a relative risk of 1.5.  Your power 
calculation would state how much power you would have to detect a relative risk of this 
magnitude (e.g., 84%).   This is also the approach to use when giving power for secondary aims, 
when the primary aim is used to set the sample size.  In this case, it is not be necessary to have 
80% power, but it certainly is nice if you do. 
 
Number 3 above is used when you have a fixed number of observations and specify the power a-
priori, and want to know what level of risk you could detect.  This is useful when you can’t 
specify a meaningful or minimum effect size.  In this case you solve for minimum detectable 
effect size, and you have to then argue whether this would be meaningful if detected.  



Some Important Issues 
 
Effect Size:   Effect size plays a key role in defining the power of your study.  If you are doing 
an observational study and using power analyses to determine the number of observations, then 
you must first select an effect size that would be meaningful to detect.  This is not always easy, 
and it must be done carefully and with deliberation.  One approach is to consider “clinically 
meaningful” effects, such as differences that would lead to reduced morbidity or mortality.  A 
second approach is to consider differences that would be meaningful at the population level, in 
which case small differences in common exposures may have important implications for public 
health.  Lastly, you may be able to argue from other research, for example other studies with 
similar exposures or of the same disease, or from accepted (ideological) standards in your field 
of research.  Clinical trials require not only arguing that the effect will be meaningful but that the 
intervention will be sufficiently strong to produce such an effect.  In all cases, your best defense 
is a pilot study, from which you justify expected effects.  Your second best defense is to 
argue by analogy from earlier studies.   
 
Multiple Testing:  Whether or not you must adjust your α error for multiple tests is a 
philosophical argument.  If you have several specific aims, you have a dilemma.  The most 
conservative approach is to divide the desired α error for a single test by the total number of 
planned tests, an approach that leads quickly to escalating sample sizes and budgetary 
nightmares.   
 
There are several approaches to handling multiple tests, and which ever you choose must be 
justified clearly.  Whatever you do, do not ignore the problem!  At the very least, state that you 
are aware of it, but that because you have given a prior hypotheses you are protected against the 
worst offenses of multiple testing.  This argument is more or less true, more if your hypotheses 
are orthogonal and less if they are closely related.  Beware multiple testing with variables 
derived from the same measure (e.g., 144 nutrients and countless ratios from a food frequency 
questionnaire; weight, body mass index, and hip/waist ratios;  or vitamins E, A, B1, B2, B6 and 
B12 from multivitamin supplements).   There are other statistical solutions, and it is best to 
consult with a biostatistician who understands your research area.  One approach is to specify a 
single test that must be significant before you complete subsequent tests, and there are accepted 
approaches that are not as costly as simply dividing your α error by the number of tests.  Finally, 
consider moving as many tests as possible to secondary aims.  Reviewers are not as strict about 
considering secondary aims as part of multiple tests for overall study power.  
 
See examples of Power sections below. 
 
 
For a Case Control Study  
 
Study Power and Minimal Detectable Odds Ratio 
Because the sample size of this study is fixed by the PCPT, we present power calculations in 
terms of the minimal detectable difference in the rate of biopsy proven prostate cancer between 
those in the upper quarter of fat intake (or any nutrient or food group intake), p1, and the rate in 
lower quarter, p0.  



The difference was computed based on the standard power calculation formula for the difference 
between groups:103 

∆ =  p - p =
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This formula yields the minimal detectable difference in outcome, ∆, for a study with n subjects 
in the upper quartile of food intake and n subjects in the lower quartile.  This difference can then 
be converted into a minimal detectable odds ratio, which can be interpreted as the minimal odds 
ratio for the upper quartile of intake versus lower quartile that will yield a 95% CI around the 
odds ratio that would exclude one.    
The assumptions used in the computation were: 
1. A two-sided significance level α equal to 5%. 
2. Power (1-β) equal to 80%. 
3. The average outcome, p , in the combined upper and lower quartile of intake was assumed to 

be the 6%.  This is based on the PCPT estimate that 6% of the control group who have 
biopsies will have detectable prostate cancer at seven years.  This estimate is based on a 
variety of sources.  First, the 10-year risk of clinically overt prostate cancer for a 65 year old 
white male is 4.3% and for a black male 6.1%.104  In a prospective study of men negative 
for cancer at baseline (based on examination of tissue from TURP), there was a 6.3% 
incidence of prostate cancer by nine years (based on digital rectal examination alone for 
follow-up).105  Because the PCPT will recruit men at higher risk (based on race and family 
history), will use an endpoint based on uniform biopsies and not screening, and will not 
eliminate participants at baseline with latent cancers detectable only by biopsy, the 6% 
estimate in the control group appears very conservative.   

4. The number of men in each quartile of intake, n, was assumed to be 1,350.  This was based 
on 9,000 men to be randomized into the PCPT control arm (proposal), with 60% (5,400) 
having complete data.  The assumptions leading to the 40% loss are discussed above under 
"Endpoint Ascertainment and Final Sample Size."  By definition, one quarter of the 5,400 
men would fall into each quartile of intake.  

Applying the above assumptions to the equation above yields d = .026.  Translating this 
difference into p0 and p1 and an odds ratio (such that ( ) . .p p p0 1

02 06 026+ = − = and p1 ) yields p0 
= .047, p1 = .073 and an odds ratio = 1.60.  This suggests that the study will have 80% power to 
detect an odds ratio of prostate cancer of 1.6 for those in the upper vs. lower quartile of fat intake 
or saturated fat intake.  This magnitude for the odds ratio is consistent with that observed in prior 
studies.  Of the four case-control studies that had at least 250 cases and which computed total fat 
intake (Table 1), the relative risks of high versus low total fat consumption were 2.0, 1.5, 1.9, 
0.8.  Results for high-fat food groups and animal fat are similar.    
We also completed power analyses based on an expected 4% prevalence of more advanced, 
latent tumors.  This yields d = 0.21, p0 = .030, and p1 = .051.  We will have 80% power to 
detect an odds ratio of 1.75.  
There are three potential sources of additional statistical power.  First, if there is a dose-response 
effect when we use all four quartiles of fat intake to calculate a test for trend, we will be able to 
detect an odds ratio of 1.54 for those in the upper quartile of intake vs. lower quartile.  This is 
based on a test for linear trend in proportions.106  Second, if we are able to combine the 
intervention with control groups, our sample size will double (although not our number of cases, 
if the intervention is effective).  Third, we can use an ordered, histopathologic scale to assess 
tumor grade rather than a binomial (presence/absence) outcome.    



For secondary aims a, b, and c, the power calculations are essentially identical except we assume 
that fruits, vegetables, fiber and some micronutrients may be protective.  The minimal detectable 
odds ratio of prostate cancer for those in the upper quarter of nutrient intake versus lower quarter 
would be .62 (the inverse of 1.60).  This magnitude of reduction (38% reduction in risk) is 
reasonably consistent with past studies (Table 2) and is appropriate as a degree of reduction 
which would have a potential public health impact.  
For secondary aim d, comparing the effects of finasteride in participants with low- vs. high-fat 
intakes, the power to detect subtle differences is low.  However, there is fair power to detect 
sizable interactions.  One example of such an interaction is that there will be no intervention 
effect in the low-fat diet group.  Keeping assumptions about the overall effects of finasteride 
(25% reduction in incidence) and the effects of dietary fat (RR=1.6 in lowest versus highest 
quartiles), this would require detecting a difference between the effects of finasteride with a low 
fat diet (0% reduction) versus a high fat diet (40% reduction).  Based on a linear trend test 
comparing slopes, there would be 70% power with two-sided alpha error of 5% to detect such an 
interaction.   
 
 
 
Cohort Study 

 
Expected numbers. After discounting rates by 20% to account for a possible “healthy 

volunteer effect”, we expect over 2300 cancer cases to be diagnosed in the cohort over the 2.25 
year follow-up period (Table 10). Although total cancer incidence is the primary endpoint, 
cancers will be grouped into major SEER groupings, as shown in Table 10. The other 
assumptions on which these numbers are based and a discussion of the detectable risk ratios are 
given in Section D.9. This table also presents the number of endpoints that are expected if this 
cohort were followed-up in the future. 

 
Table 10. Expected Number of Events and Detectable Risk Ratios 

 Expected N for follow-up period of: 
Outcome 2.25 Years 6.25 Years 10.25 Years 
 Total Men Women Total Men Women Total 
Total cancer cases 
(invasive) 

2360c,e 1310c,e 1050c,e 6360c,e 3520c,e 2840c,e 9910c,e 

 Lung 420b,e 240a,d 180a,d 1170c,e 670c,e 500b,e 1860c,e 
 Prostate - 510b,e - - 1420c,e - 2270c,e 
 Breast - - 340b,e - - 910c,e 1420c,e 
 Colorectal 230a,d 130 100 670c,e 360b,d 310b,e 1120c,e 
  Colon 180a,d 100 80 530c,e 280b,d 250b,d 890c,e 
  Rectal 50 30 20 140a,d 80 60 240b,d 
 Corpus Uteri - - 80 - - 220a,d 340b,e 
 Bladder 50 40 10 140a,d 110 30 240b,d 
 Non-Hodgkins Lymphoma 50 25 25 140a,d 75 65 230b,d 
 Oral 60 40 20 170a,d 110 60 270b,d 
 Melanoma 60 35 25 160a,d 90 70 240b,d 
 Pancreas 50 25 25 150a,d 75 75 250b,d 
Total deaths 2910c,e 1730c,e 1180c,e 8690c,e 5090c,e 3600c,e 15130c,e 
a-e Detectable risk ratio (RR) based on trend test: 
 



 
 RR for one Non-users Users of supplement (tertiles)  RR for 

one 
Non-users Users of supplement (tertiles) 

 category 
increment 

of  
supplement 

lowes
t  

middle highest  category 
increment 

of  
supplement 

lowes
t 

middle highest 

A 0.80 1.0 0.80 0.64 0.51 or 1.25 1.0 1.25 1.56 1.95 
B 0.85 1.0 0.85 0.72 0.61 or 1.18 1.0 1.18 1.38 1.63 
C 0.90 1.0 0.90 0.81 0.73 or 1.11 1.0 1.11 1.24 1.37 
D 0.70 -- 1.00 0.70 0.49 or 1.43 -- 1.00 1.43 2.04 
E 0.80 -- 1.00 0.80 0.64 or 1.25 -- 1.00 1.25 1.56 
 
Two subscripts are given: the first is for vitamins E, C and calcium for the 4 level comparison and the second for the 
3 level comparison (users only).. 
No subscript indicates detectable RR < 0.80. 
 
 Study power. The projected number of events and detectable risk ratios are given in 
Table 10. These were computed from the following assumptions: 1) 40,000 women and 35,000 
men; 2) age distribution in the study population matching the age distribution in the Supplement 
Pilot Study: women 26%, 19%, 15%, 20%, and 20% and men 26%, 19%, 18%, 17%, and 20% at 
ages 50-54, 55-59, 60-64, 65-69, and 70-74, respectively; 3) vitamin supplement use in the study 
population matching the use reported in the pilot study (Table 5); 4) one-quarter of the study 
population recruited at each of 1 year, 1½ years, 2 years, and 2½ years after the project begins; 
5) cancer incidence rates by age and sex at 80% of the corresponding rates from the western 
Washington SEER registry for years 1990-95; the use of 80% assumes a healthy volunteer effect; 
6) death rates by age and sex at 60% of the U.S. vital statistics rates for whites for years 1991-93 
[133]; the 60% is for a healthy volunteer effect and is based on our experience in CARET 
(unpublished data); 7) 2% per year loss of participants to follow-up (i.e., their vital status and 
cancer status cannot be determined) expected to be conservative based on the discussion in 
Section D.8; 8) primary analysis is a test for trend among four categories of supplement use: 
none and three tertiles of level of use among users, using all events occurring post-enrollment 
with the true risk ratio constant between successive categories; and 9) two-sided significance 
level of 0.05 and power of 80%. 
 

Table 10 (see footnotes) gives the risk ratios detectable for the total cancer outcome at the 
primary analysis at the end of the 5 year study (mean of approximately 2¼ years of follow-up 
since recruitment).  For men and women considered separately, we will be able to detect a 27% 
reduction in risk (RR=.73 for highest third of supplement use vs. no use of that supplement) or a 
37% increase in risk (RR=1.37 among highest third of users) for each of the four types of 
supplements of interest (vitamin C, vitamin E, calcium and multivitamins plus minerals). This 
level of risk or benefit is consistent with prior studies (4a) and would be of public health 
significance. We also have power to detect a RR=.64 for highest vs. lowest third of use for the 
trend test limited to users. Specific cancer site relative risks detectable at 2¼, 6¼ and 10¼ years 
of follow-up (if future applications were funded) are also given. By 6¼ years follow-up, there 
would be sufficient power to detect a 27% risk reduction (RR=.73) for lung, prostate, breast and 
colorectal cancer. Also, if we have at least 35% success in obtaining DNA from participants, we 
should have a reasonable number of events in this group by 6 ¼ years. The number of expected 
events by 6 ¼ years in the group with usable DNA would be approximately the number listed 
under 2 ¼ years in Table 10 (for the full sample). 



An advantage of the planned design is the anticipated high level of supplement intake in 
the study population.  If the true relation between relative risk and dosage of supplement is log-
linear (i.e., constant relative risk for equal increments in dosage of supplement), and if for a 
given study population the detectable relative risk per unit change in dosage is r, then increasing 
the standard deviation of dosages of supplements in the study population by a factor f changes 
the detectable relative risk per unit change in dosage to approximately r1/f (131).  Thus, a 50% 
increase in standard deviation of dosages would change detectable relative risks of 0.95, 0.90, 
0.85, and 0.80 to 0.97, 0.93, 0.90, and 0.86, respectively, and a doubling would change them to 
0.97, 0.95, 0.92, and 0.89.  We have shown that the increase in power is even greater in the 
presence of measurement error (85). Thus, by recruiting a study population with a wide range of 
supplement intake, we increase the power of the study to detect health effects of public health 
significance. 
 
 
For a Randomized Trial 
 
STATISTICAL POWER 
Table 11 gives the summary of study power for the principal endpoints and the secondary 
endpoints related to dietary change at the one year follow-up.  The criteria for power calculations 
are based on two-sided tests with alpha error of five percent.  We based our power analyses on a 
minimum difference in percentage of energy from fat of two percentage points between UC and 
PSH; for fiber the minimum difference is two grams.  Choosing these minimum effect sizes for 
this intervention trial has been difficult, and we explain our reasoning in detail below.   
 
We believe that the intervention effect sizes of two percentage points in energy from fat and two 
grams of fiber per 1000 Kcal are reasonable targets for our Personalized Self-Help intervention, 
for several reasons.  First, these effects sizes are scientifically important.  While modest 
compared to intensive, clinical interventions that are designed to treat underlying disease, these 
effects sizes are meaningful public health goals for population-level disease prevention.  We 
point out to reviewers that a two percentage point reduction in percentage of energy from fat is a 
5.6% reduction in total fat intake (based on a 2000 Kcal diet at 36% energy from fat).  Second, 
we expect larger effects sizes then those from our earlier studies, because we will add 
components to enhance the potency of our interventions, especially those related to use of fruits 
and vegetables.  Third, the effects of self-help interventions tend to be cumulative, both in 
smoking cessation programs61 and our previous Primary Care study (Table 1).  Thus, our 
estimates of effectiveness at 12 months may underestimate the intervention's long-term impact.  
Fourth, we place this research in the context of community interventions, in which self-help 
interventions would be a component of a comprehensive intervention that targets food services, 
supermarkets, media and the health care industry.  We would expect a greater impact of the PSH 
intervention when coupled with interventions that target environmental determinants of dietary 
behavior.  In summary, the above arguments support more realistic goals for public health 
dietary change interventions.  Achieving the effects proposed for this intervention in a single 
year would represent significant movement toward the Year 2000 goals.   



Table 11.  Power Analyses (α2=.05) for Principal and Secondary  
Endpoint Measures with 620 Participants per Treatment Arm 

 
 
Instrument 

 
 
Measure 

Smallest Meaningful 
Intervention Effect 
Between Each Arm 

 
Power
(1-β) 

Minimum 
Detectable 

Difference with  
80% Power 

Principal 
Endpoints 

    

24-Hour Diet 
Recall 

Fat (% En) 2 percentage points .80 2.0 

 Fiber (g/1000 
Kcal) 

2 g .88 1.8 

Secondary 
Endpoints 

    

Fat and Fiber 
Behavior 
   (FFB) 

Fat Scale1 
Fiber Scale1 

0.14 units 
0.19 units 

> .95 
> .95 

.057 

.064 

Stage of Change Percent 
moving into 
action stage2 

Fat: 18 percentage points
Fiber: 17 percentage 
points 

.94 
> .95 

.14 

.11 

1Scales range from 1 to 4, and are not directly comparable to those on Tables 1 and 2. 
2Precontemplation, contemplation, decision at baseline moving to action or maintenance at follow-
up 

 

We used data from both published studies62 and our own datasets to estimate the variances of 
nutrients measured by 24-hour recall.  We used data from the Dietary Intervention Trial in 
Primary Care Practices study to transform our effect sizes expressed as nutrients into the metric 
of the fat- and fiber-habits scales: A unit change in the fat-related habits scale corresponds to a 
14 percentage point change in fat (%en) and a unit change in the fiber-related habits scale 
corresponds to a 5 g/1000 Kcal change in fiber.  Finally, for stage of dietary change, we have 
three studies in which participants completed the two stage of change questionnaires separated 
by between 3 and 12 months.  On the basis of these studies, we estimate that approximately 28% 
of participants will be in a pre-action stage for fat and 46% will be in a pre-action stage for fiber, 
and that intervention will increase the percentage of participants moving into an action stage by 
approximately 18% for fat and 12% for fiber. 

Based on the above, our design is to have 620 participants in each treatment arm active 
throughout the study.  We propose to recruit 730 per arm to allow for a 15% loss to follow-up 
over 12 months.  This will give us 80% power to detect minimal meaningful differences in the 
principal endpoint measures, and 90% or greater power to detect differences based on the FFB 
and movement through stages of change.  For the 18 month follow-up, in which there will be 310 
participants per arm, we will have greater than 95% power to detect the minimal intervention 
effect using the FFB.  Power to detect shifts through stages of change are somewhat less, 70% 
for fat and 83% for fiber.  Though the power to detect differences based on the FFB at 18-



months is large, we chose to keep this sample size to support analyses of factors, for example 
gender or age, related to long-term intervention effectiveness. 

 
The power calculations for the principal endpoints, differences in fat (%en) and fiber intake from 
24-hour recalls, are based on two, very conservative assumptions.  First, we assumed that there is 
no autocorrelation between individual assessments of diet between baseline and one year (due to 
the high intra-individual variability of 24-hour recall estimates of nutrient intake).  We observe 
correlations between repeated 24-hour recall measures of fat that are less than 0.2, and this level 
of autocorrelation would improve study power only marginally.  Second, we considered an 
evaluation based on a post-test measure alone.  Such an evaluation would have more power, 
because the variance of the difference in mean nutrient intake between intervention and control 
arms at the 12-month follow-up will be less than the variance of the differences in mean change 
from baseline to 12 month follow-up.  However, an evaluation based on post-test measures only 
would require that mean nutrient intake at baseline is well balanced between the two arms.  We 
do not feel comfortable relying upon that assumption. 

 
 

For an Ancillary Study to a Randomized Trial  
 
Respiratory  
Ancillary Study: Design assumptions, sample size calculation and study power 
The starting point for all design considerations is to estimate the expected response to treatment. 
There are three possible patterns for the intervention effect expected in this study. Treatment 
with nutritional antioxidant supplements may produce an initial response in FEV1 (expected to 
be an increase in level), a change in the slope of decline in FEV1 (expected to be an attenuation 
in slope), or a combination of both. The size of the intervention effect will depend on the pattern 
of response to treatment, and therefore on the magnitude of the increase in FEV1 and/or the 
degree of attenuation in the slope of FEV1 decline. Figure 1 shows various scenarios for the 
intervention effect according to this scheme, and the placebo line shows the expected average 
decline in FEV1 over three years in untreated participants. As shown in the figure, the magnitude 
of the treatment effect is a function of both the initial response and the attenuation in slope. Thus, 
while we describe our sample size calculations in terms of the 3-year intervention effect, we 
recognize and describe below information related to these different scenarios for the pattern of 
the treatment effect.   

 
Figure 1. The intervention effect on FEV1 may take one of 3 patterns, as shown. The 

placebo line shows the expected average yearly decline in FEV1 among 
untreated men. 
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The following estimates of five parameters were used in calculating sample size: 
Decline in FEV1 in the placebo group:  During mid- to late adulthood, FEV1 declines on average 
about 25 ml/year, with a steeper decline among cigarette smokers of about 75 ml/year (16).  We 
assumed an average rate of decline in the placebo group of 33 ml/year, given a mix of about 85% 
nonsmokers and 15% smokers. This estimate of expected change in 3 years in the placebo is 
conservative for two reasons: (1) our estimate for annual rate of decline may be low, indeed 
recent data over 30 years of follow-up in the Seven Countries Study suggests the annual rate of 
decline in nonsmokers is about 38 ml/year (25), and (2) if the mix includes more smokers, then 
the actual average rate of decline in the placebo group may be greater still.  Thus, we expect that 
after three years of follow-up there will be a -100 ml change in FEV1 in the placebo group.   
Standard deviation of the change in FEV1 from baseline to follow-up:  The standard deviation of 
FEV1 is estimated to be about 680 ml (69, 99). The correlation in repeated measures of FEV1 
over 3 years is estimated to be 0.80 (69). The variance of the change in FEV1 i.e., the variance of 
the difference, σd

2, is equal to (2 x variance of single measure) x (1- intraclass correlation 
coefficient). Using the above information, the standard deviation of the change in FEV1 was 
estimated as 430 ml. 
Loss to follow-up (drop outs, deaths): The loss to follow-up and non-compliance is 
conservatively estimated at 2.5% annually. We expect the actual losses to be less given that men 
enrolled in this study are highly motivated volunteers. 
Decline in FEV1 in group treated with selenium alone:  We used three lines of evidence to 
estimate the expected effect of the selenium intervention. First, we considered the cross-sectional 
association of selenium with FEV1. Second, we considered observational longitudinal 
epidemiologic studies of diet and FEV1. Finally, we considered the longitudinal Lung Health 
Study (99) and the effect size produced by the smoking cessation intervention in that study. A 
cross-sectional study found that serum selenium was strongly associated with FEV1 (1): a 
standard deviation increase in serum selenium (17 ng/ml) was associated with an increase of 25 
ml in FEV1.  Given that selenium supplementation (200 µg/day) is expected to raise mean serum 
selenium by 67% (65), i.e., about 5 standard deviations, supplementation could lead to a 
difference of 125 ml in FEV1 in treated vs. untreated men based on the magnitude of the cross-
sectional effect. A difference this large is not expected as some of the cross-sectional effect 
likely resulted from long-standing differences over time. In a longitudinal study of adults, the 
sub-group with unfavorable dietary change (decreased fruit intake) had a steeper annual decline 
in FEV1 compared to those with no change in diet (37). Over three years of follow-up the change 
in FEV1 was –330 ml and –9 ml, respectively, in the two groups, yielding a difference of 321 ml. 
Once again, we do not expect a difference this large: indeed it is unclear what proportion of this 
difference is due to diet change per se versus other behavioral changes that may accompany 
unfavorable dietary change. In the Lung Health Study (99) the difference in FEV1 between 
sustained quitters and continuing smokers was about 250 ml over 3 years of follow-up.  This 
difference was the result of initial improvement in FEV1 and a subsequent attenuation in rate of 
decline (as per top line in figure 1), and is presumably due to the change in oxidative burden 
brought about by smoking cessation.  We reasoned that the effect of selenium intervention would 
not be as great as the effect achieved by successful smoking cessation. 
The selenium intervention proposed herein is expected to contribute to an improvement in the 
antioxidant defenses in the lung, thus the smoking intervention, the dietary change, and the 
selenium effect sizes described above are relevant as they presumably result from similar 
changes in the antioxidant “shield”.  Based on the three lines of evidence above, we powered this 
study conservatively to detect a difference in FEV1 of 85 ml over 3 years, or slightly more than 
half the cross-sectional effect.   
Decline in FEV1 in group treated with vitamin E alone:  To estimate this effect, we compared the 
cross-sectional data on vitamin E to that available for selenium. In a cross-sectional study of 
serum vitamin E and FEV1 (1), a standard deviation increase in serum vitamin E (11.5 µmol/l) 



was associated with an increase of 40 ml in FEV1. Vitamin E supplementation (400 mg/day) is 
expected to raise serum vitamin E by 15 µmol/l or 1.4 standard deviations, and thus may increase 
FEV1 as much as 50 ml.  Thus, the effect size for Vitamin E was estimated to be about half of the 
effect size for selenium, given the comparison in their cross-sectional effects (50/125=40%).  
After 3 years of follow-up, we hypothesize that the effect of vitamin E intervention will be about 
half the effect of the selenium intervention. Following this argument, we expect about a 57 ml 
decrease in FEV1 in the vitamin E group, as compared to a 100 ml decrease in FEV1 in the 
placebo group.  
Decline in FEV1 in group treated with both selenium and vitamin E:  In the cross-sectional study 
(1), the effects of vitamin E and selenium were independent.  We therefore assumed that the 
effects of the study supplements will be additive.  Based on this assumption, after 3 years of 
follow-up an increase of 28 ml in FEV1 is expected in the group receiving both selenium and 
vitamin E, to yield an overall difference with the placebo group of +28 ml (i.e., treatment effects 
are additive: Se effect is 85 ml, vitamin E effect is 43 ml; combined effect is 128 ml).  
Sample size calculation: We used the formula below to compute the sample size under the 
following conditions: expected treatment effect of 85 ml (=d*), ß=0.10, α=0.018 (see above on 
multiple comparisons), σd

2 = 430 ml, and r=1. 
N = (Zα/2 + Zβ)2 x σd

2 (r+1)/ (d*)2 r 
The required number of men, N, in each treatment group is 700 at year 3 when study analyses are 
completed. Allowing for an annual attrition of about 2.5%, we will enroll 750 men per cell. The 
total sample size is 3,000 participants, to be recruited from 20 study sites in order to complete 
recruitment within a one-year timeframe (about 150 per site).  
This sample size calculation, which provides us with adequate power for the primary aims of the 
proposed study, is the basis for our targeted enrollment. We also calculated the power of the 
study for all other outcomes (Table 2). We also examined how changes in our assumptions 
would affect power. For example, we assumed an annual attrition of 2.5%, but if the attrition was 
5%, we would have 88% power for specific aim 1.1 after three years of follow-up. Because the 
vitamin E effect is expected to be about half the for selenium effect, longer follow-up will be 
needed to detect this effect. We estimate adequate power by year 6, and plan to use interim 
results at year 3 for Vitamin E to motivate a continuation proposal. Specific aim 2.3 proposes 
effect modification, whereby the effect of supplementation is hypothesized to vary across levels 
of oxidative stress. Given the following three conditions, we have 90% power at year 3 to detect 
an interaction: (1) total group is split at the median of the urinary oxidative stress biomarker, (2) 
treatment has no effect in low oxidative stress (FEV1 decline similar to placebo), (3) treatment 
causes an overall improvement in FEV1 of 70 ml in 3 years in high oxidative stress group. 



 
Table 2. Summary of power calculations† 

 

Comparison 
Intervention effect§ 

PfbIfb FEVFEVFEVFEV ))()(())()(( 1111 −−−  Power 

3 years follow-up   
Selenium vs. placebo  85 ml  

90% 
Selenium & 
Vitamin E vs. 
placebo 

128 ml  
>99% 

Vitamin E* vs. 
placebo 43 ml 38% 

Combined vs. Vitamin 
E  85 ml 90% 

Combined vs. 
Selenium  43 ml 38% 

6 years follow-up   
Vitamin E* vs. 
placebo 85 ml 88% 

Combined vs. Vitamin 
E  170 ml >99% 

Combined vs. 
Selenium  86 ml 89% 

†all calculations based on annual attrition of 2.5% in each cell 
§ subscripts b and f refer to baseline and follow-up, and the subscripts I and P refer to intervention and 
placebo groups 
*expected effect size for Vitamin E is predicted to be about half the effect of selenium  

 
We also considered what level of difference between treatment and non-treatment groups would 
be clinically meaningful. If the difference in the rate of decline was as small as 15ml/year 
without an initial increase in FEV1, similar to the overall effect in the Lung Health Study (99), 
then the annual decline in FEV1 in the treatment group would be about 18 ml/year (expected 
decline in absence of treatment =33 ml/year – 15 = 18), i.e., a 45% attenuation in the annual rate 
of decline. Given this effect size, the trial would need longer follow-up. At three years the 
magnitude of the effect will be evident, and if it is at this level or greater, we plan to seek 
funding to continue the study to assess whether the attenuation in decline is sustained with 
continued supplementation. At 6 years, with 2.5% annual attrition yielding a final estimate of 
550 per cell, there is 88% power to detect a difference of 90 ml in FEV1 (i.e., the expected 
difference in 6 years if supplementation produces a 45% attenuation in the slope of FEV1 
decline). 
 
 


